HG-SL: Jointly Learning of Global and Local User Spreading Behavior for Fake News Early Detection

Ling Sun¹, Yuan Rao^{1*}, Yuqian Lan¹, Bingcan Xia¹, Yangyang Li²

¹ Xi'an Key Laboratory of Social Intelligence and Complexity Data Processing, School of Software Engineering, Xi'an Jiaotong University, China ²National Engineering Laboratory for Risk Perception and Prevention, China {sunling, Yuqian_Lan_xjtu, bingcan92}@stu.xjtu.edu.cn, raoyuan@mail.xjtu.edu.cn, liyangyang@cetc.com.cn

AAAI 2023

Introduction

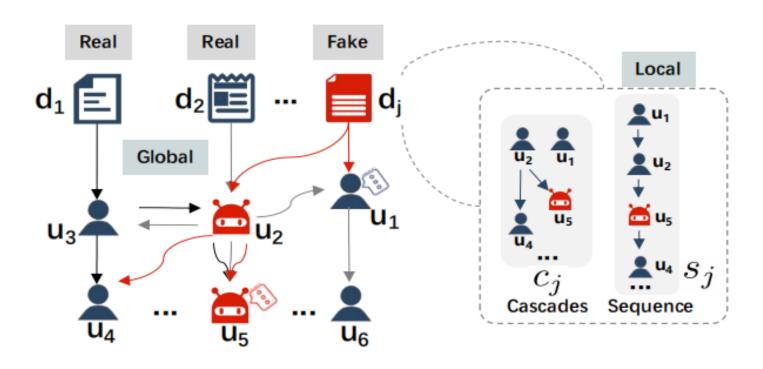


Figure 1: Illustration of global and local user spreading behavior, fake objects and abnormal users are highlighted in red. The abnormal user u_2 tricks a normal user u_4 to spread the fake news d_j , and u_5 cooperates with u_2 to make fake comments, further causing confusion.

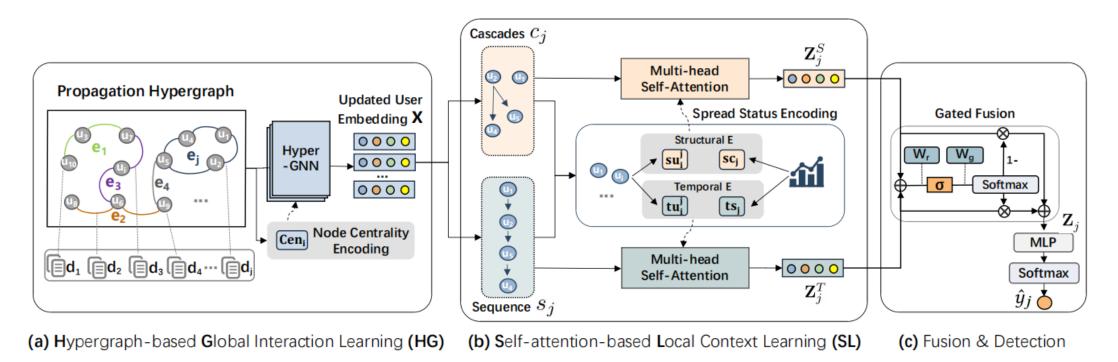
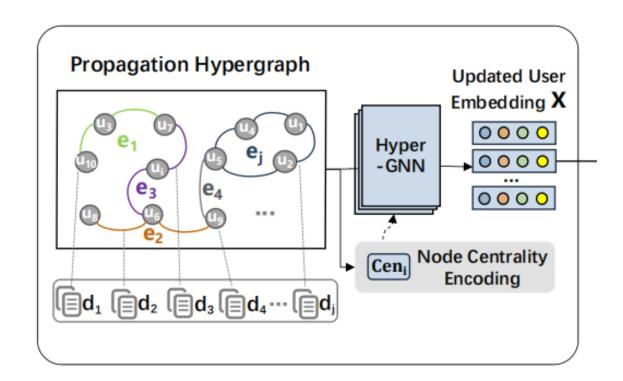



Figure 2: An overview of the architecture of HG-SL which consists of three major components: (1) Global interaction learning module uses hypergraph neural networks and node centrality encoding to learn the global relations of users, (2) local structural and temporal features are learned in local context learning module through multi-head self-attention mechanism and spread status encoding, and (3) in fusion & detection module, news propagation representations from structural and temporal aspects are merged for detection through gated fusion mechanism.

(a) Hypergraph-based Global Interaction Learning (HG)

Hypergraph Neural Network

Nodes-to-edge Aggregation.

$$\mathbf{a}_{j}^{l} = \sigma\left(\sum_{u_{i} \in e_{j}} \frac{1}{|e_{j}|} \mathbf{W}_{1} \mathbf{x}_{i}^{l-1}\right) \tag{1}$$

$$D = \{d_1, d_2, ..., d_m\}$$

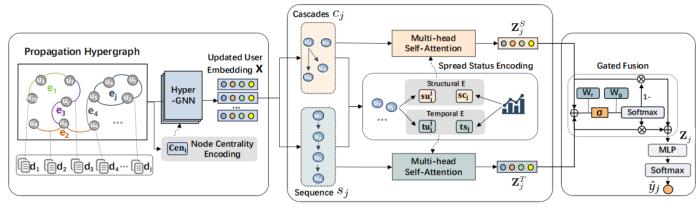
$$U = \{u_1, u_2, ..., u_n\}$$

$$G = (U, E)$$

Activity degree

$$Act_i = |\mathcal{E}_i|$$

 Cen_i


$$x_i^0 = x_i^{ini} + \dot{C}en_i$$

Edges-to-node Aggregation

$$\mathbf{x}_{i}^{l} = \sigma\left(\sum_{e_{i} \in \mathcal{E}_{i}} \frac{1}{|\mathcal{E}_{i}|} \mathbf{W}_{2} \mathbf{a}_{j}^{l}\right)$$
(2)

Method

 $D \text{ as } C = \{c_1, c_2, ..., c_m\} \text{ and } S = \{s_1, s_2, ..., s_m\}$ $c_j = \{c_{j,1}, c_{j,2}, ..., c_{j,k}\}$ $c_{j,p} = \{(u_i, L_i^{j,p}, I_i^{j,p}) | u_i \in U\}$ $s_j = \{(u_i, t_i^j) | u_i \in U\}$

- (a) Hypergraph-based Global Interaction Learning (HG)
- (b) Self-attention-based Local Context Learning (SL)
- (c) Fusion & Detection

Local Temporal Learning

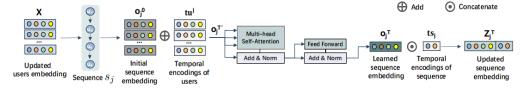


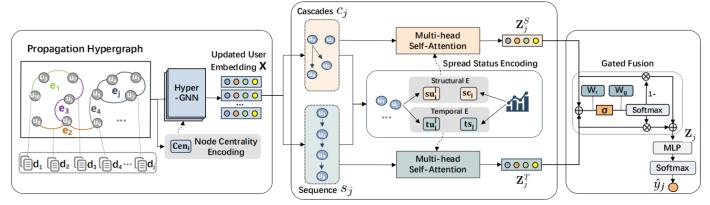
Figure 3: Temporal learning process of multi-head self-attention module. User-level temporal encodings are introduced before learning, while encodings of sequence level are supplemented after self-attention learning.

$$\mathbf{o}_{j}^{T'} = [(\mathbf{x}_{i} + tu_{i,1}^{j} + tu_{i,2}^{j}) | u_{i} \in s_{j}].$$

$$\operatorname{Att}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}''}{\sqrt{d^{d}/H}}\right) \mathbf{V} \qquad (3)$$

$$\mathbf{h}_{q,j}^{T} = \operatorname{Att}\left(\mathbf{o}_{j}^{T'}\mathbf{W}_{q}^{QT}, \mathbf{o}_{j}^{T'}\mathbf{W}_{q}^{KT}, \mathbf{o}_{j}^{T'}\mathbf{W}_{q}^{VT}\right) \qquad (4)$$

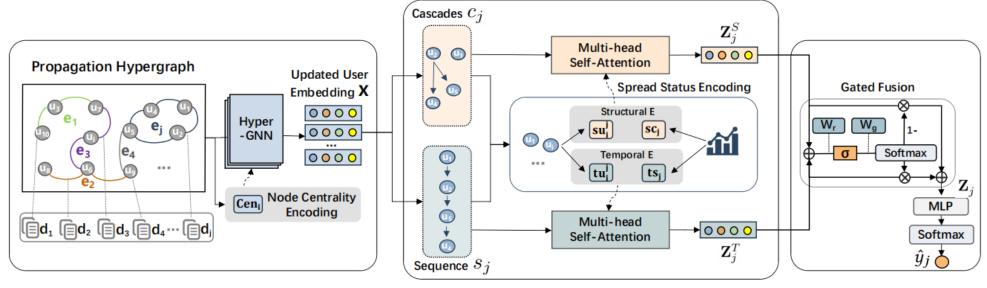
$$\mathbf{h}_{j}^{T} = [\mathbf{h}_{1,j}^{T}; \mathbf{h}_{2,j}^{T}; \dots; \mathbf{h}_{H,j}^{T}] \mathbf{W}_{O}^{T}$$


$$\mathbf{o}_{j}^{T} = \operatorname{MEAN}(\mathbf{W}_{A_{2}}\sigma\left(\mathbf{W}_{A_{1}}(\mathbf{h}_{j}^{T})'' + \mathbf{b}_{1}\right) + \mathbf{b}_{2}) \qquad (5)$$

$$\mathbf{Z}_{j}^{T} = [\mathbf{o}_{j}^{T}, ts_{j}]$$

Local Structural Learning

$$\mathbf{o}_j^{S'} = [(\mathbf{x}_i + su_{i,1}^{j,p} + su_{i,2}^{j,p}) | u_i \in c_{j,p}]$$
$$\mathbf{Z}_j^S = [\mathbf{o}_j^S, \mathbf{sc}_j]$$


(a) Hypergraph-based Global Interaction Learning (HG)

(b) Self-attention-based Local Context Learning (SL)

(c) Fusion & Detection

Method

(6)

- (a) Hypergraph-based Global Interaction Learning (HG)
- (b) Self-attention-based Local Context Learning (SL)
- (c) Fusion & Detection

Fusion & Detection

$$\mathbf{Z}_{j} = g\mathbf{Z}_{j}^{S} + (1 - g)\mathbf{Z}_{j}^{T}$$

$$g = \frac{\exp(\mathbf{W}_{g}\sigma(\mathbf{W}_{r}\mathbf{Z}_{j}^{S}))}{\exp(\mathbf{W}_{g}\sigma(\mathbf{W}_{r}\mathbf{Z}_{j}^{T}) + \exp(\mathbf{W}_{g}\sigma(\mathbf{W}_{r}\mathbf{Z}_{j}^{S}))}$$

$$\hat{y}_j = \operatorname{softmax}(\mathbf{W}_p \mathbf{Z}_j + \mathbf{b}_p) \tag{7}$$

$$\mathcal{J}(\theta) = -\frac{1}{m} \left(\sum_{j=1}^{m} y_j \log(\hat{y}_j) + (1 - y_j) \log(1 - \hat{y}_j) \right)$$
 (8)

Datasets	PolitiFact	GossipCop
# Fake news	157	2,732
# Real news	157	2,732
# Users	28,049	65,064
# Spreads	36,481	291,043
Avg. # Participants / News	116	53
Max # Participants / News	759	195
Min # Participants / News	1	1

Table 1: Statistics of datasets used in our experiments

Method	Considerations						Politifact				Gossipcop			
	Text	Temp.	Stru.	User	Local	Global	Acc.	Prec.	Rec.	F1	Acc.	Prec.	Rec.	F1
GRU	√	√			√		62.73	63.82	61.30	60.98	78.92	82.33	78.57	80.36
PPC		\checkmark		\checkmark	✓		64.21	64.56	61.07	62.82	90.38	90.33	91.10	90.71
CSI	✓	\checkmark		\checkmark	✓	\checkmark	75.33	83.36	74.20	75.82	78.20	82.34	78.32	80.89
BiGCN			√	√	√		78.83	80.39	76.26	78.71	89.02	92.79	84.81	88.97
GCNFN	✓		\checkmark	\checkmark	✓		82.35	86.85	76.80	82.24	95.61	94.40	97.02	95.59
GLAN	✓		\checkmark	\checkmark	✓	\checkmark	82.34	84.68	83.59	84.13	95.52	94.63	93.29	93.96
UPFD	✓		\checkmark	\checkmark	✓	\checkmark	84.31	<u>87.14</u>	81.03	84.25	<u>97.09</u>	<u>96.91</u>	<u>97.31</u>	<u>97.07</u>
HPFN	√	✓	√		√		75.63	71.46	85.40	77.80	86.39	85.66	87.41	86.53
Ours		✓	√		√	✓	90.05	92.30	88.61	89.93	98.04	98.40	97.68	98.01

Table 2: Performance comparison of our proposed HG-SL with baselines (%).

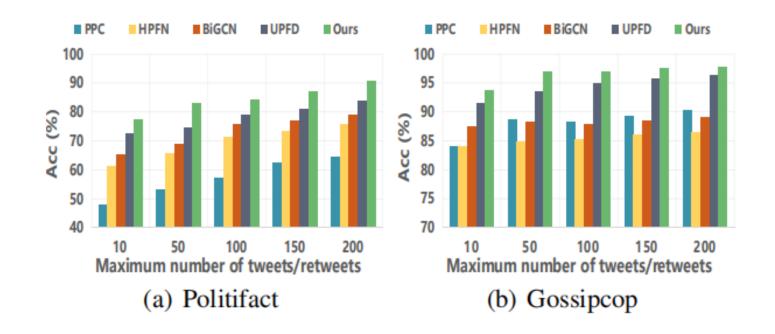


Figure 4: Performance comparison under different maximum engagements (tweets/retweets).

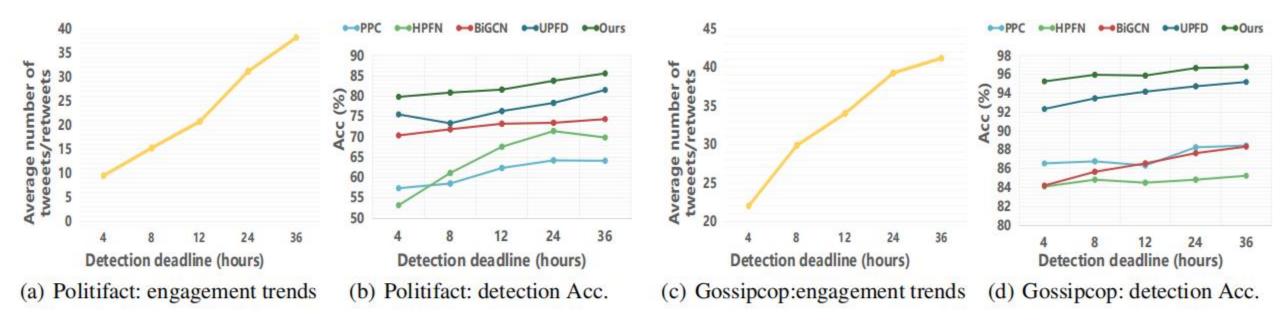


Figure 5: Performance comparison with different detection deadlines

		Politifact							Gossipcop						
Encodings		Fake			Real			P-value	Fake			Real			P-value
		Min	Max	Avg	Min	Max	Avg	1 -value	Min	Max	Avg	Min	Max	Avg	1 -value
Stru.	\mathbf{SC}_1	1	282	79.4	1	450	62.7	0.05	1	173	26.1	1	187	60.6	0.0
Su u.	\mathbf{SC}_2	0	1	0.17	0	1	0.19	0.30	0	1	0.15	0	1	0.04	8e-198
Temp.	TS_1	0	3517.6	262.5	0	4143.5	1495.1	3.9e-21	0	3692.6	322.3	0	3555.3	62.7	1.5e-72
remp.	\mathbf{TS}_2	0	1195.1	32.5	0	3355.4	490.2	4.1e-12	0	3692.5	137.9	0	3239.6	21.9	2.9e-34

Table 3: Analysis of statistical spread status features. (p-value less than 0.05 is significant)

Method	Polit	ifact	Gossipcop			
Memou	Acc.	F1	Acc.	F1		
- HG	78.73	78.07	96.00	95.97		
- SL	85.52	85.43	97.69	97.67		
 Structural SL 	88.23	88.11	97.80	97.78		
- Temporal SL	85.97	85.91	97.83	97.80		
- Node centrality E	89.59	89.55	97.72	97.70		
- Structural E	88.68	88.65	97.88	97.86		
- Temporal E	87.97	87.84	97.85	97.83		
- Gated fusion	89.59	89.46	97.97	97.58		
HG-SL	90.05	89.93	98.04	98.01		

Table 4: Ablation study (%).

Thanks